Supernovae Ia, Énergie Noire et Galaxies

Delphine Hardin Université Pierre et Marie Curie Laboratoire de Physique des Hautes Energies

habilitation à diriger des recherches 5 décembre 2012

Supernovae Ia, Énergie Noire et Galaxies

- 1. Supernovae la and Dark Energy
- 2. From EROS to the Supernova Legacy Survey SNLS : measuring the dark energy equation of state parameter *w*
- 3. SNLS galaxies : SNLS SNe Ia gravitational magnification host galaxies and cosmology
- 4. Perspectives

1930's : the Universe is in expansion

Lemaître (1927), Hubble(-Humason) (1929) : v = c z = H_0 d recent measurement : $H_0 \approx 70$ km.s⁻¹.Mpc⁻¹

matter decelerates expansion : measuring today's matter density with expansion history

homogeneous & isotropic Universe in expansion :

d \propto expansion factor **a(t)** Hubble factor : $H = \dot{a}/a$

when observing a luminous source, we measure :

- redshift z : 1+z = $\lambda_{\text{réception}}$ / $\lambda_{\text{émission}}$ = a₀ /a(t_{emission})
- Iuminosity distance :

$$D_{L} = (L / 4\pi F)^{1/2}$$

measuring the flux F, providing the Luminosity L is known

$$D_L(z) = a_0\,(1+z)\mathcal{S}_k\left(rac{c}{a_0}\int_0^zrac{dz'}{H(z')}
ight)$$

Friedman-Lemaître equations relates H(z) to Universe contents :

$$D_L(z) = rac{cz}{H_0}\,f_D(z;\Omega_m,\Omega_{DE},w)$$

• matter $\Omega_m = \rho_{m 0} / \rho_{crit 0}$ with today's critical density $\rho_{crit 0} = 3 H_0^2 / (8\pi G)$ Hubble Diagram : D_L(z)

+ Dark Energy ?

1998 : expansion is accelerating !

luminosity distances D_L and redshifts z of : Calàn-Tololo : ~ 30 nearby type la supernova explosions & The Supernova Cosmology Project, The High-Z Team : ~50 distant type la supernovae

Something else besides matter ? Cosmological constant A ? Dark Energy ?

Confirmation by other cosmological probes during the last decade :

Concordance Model :

- flat universe
- ~30% matter
- ~70% of unknown dark energy behaving as Einstein's cosmological constant Λ

•
$$\Omega_{\text{tot}} = \Omega_{\text{m}} + \Omega_{\Lambda} \approx 1$$
,

- $\Omega_{\rm m} \approx$ 0.3,
- $\Omega_{\Lambda} \approx$ 0.7 with a precision of ~ 0.02

Confirmation by other cosmological probes during the last decade :

Confirmation by other cosmological probes during the last decade :

Concordance Model :

- flat universe
- ~30% matter
- ~70% of unknown dark energy behaving as Einstein's cosmological constant Λ

•
$$\Omega_{\text{tot}} = \Omega_{\text{m}} + \Omega_{\Lambda} \approx 1$$
,

- $\Omega_{\rm m} \approx$ 0.3,
- $\Omega_{\Lambda} \approx$ 0.7 with a precision of ~ 0.02

Suzuki et al., 2012

Saul Perlmutter, Brian P. Schmidt, Adam G. Riess The Nobel Prize in Physics 2011 was divided, one half awarded to Saul Perlmutter, the other half jointly to Brian P. Schmidt and Adam G. Riess "for the discovery of the accelerating expansion of the Universe through observations of distant supernovae".

Dark Energy ?

some fluid X (« dark energy »), density Ω_{DE} and equation of state $\mathbf{p} = \mathbf{w} \rho$

- accelerates the expansion for w <-1/3
- cosmological constant Λ : formally equivalent to fluid with $\Omega_{\Lambda} = \Lambda / 3H_0^2$ and $w_{\Lambda} = -1$
- vacuum energy : ρ_{vac} = cste … mathematically equivalent to $~\Lambda~$ (Zel' dovich,1968) \textit{w}_{vac} =-1

• DE :
$$w = cste$$
 or $w(z) = w_0 + w_a (1-a/a_0)$

$$D_{L} = (L / 4\pi F)^{1/2}$$

Problem : we measure the flux F, how do we know the luminosity L ????

STANDARD CANDLES : L ≈ cste

 \rightarrow compare the fluxes of 2 standard candles at z_1 and z_2

$$\frac{d_L(z_1)}{d_L(z_2)} = \left(\frac{F_2}{F_1}\right)^{1/2} = \mathcal{F}(z_i; \Omega_M, \Omega_X, w)$$

thermonuclear explosion of a white dwarf : bright events (~10¹¹ L_☉)
rare (<1 / galaxy / century)
identified by their spectra
show little (40%) B-band peak luminosity L_{peak} dispersion they are standard candles

- → ~16% dispersion on L_{peak}
- \rightarrow 8% precision on distance D_L

Balland et al. 2009

- → ~16% dispersion on L_{peak}
- → 8% precision on distance D_L

- thermonuclear explosion of a white dwarf : bright events (~10¹¹ L_☉)
 rare (<1 / galaxy / century)
 identified by their spectra
 show little (40%) B-band peak luminosity L_{peak} dispersion
- they are standard candles

 light curve shape-luminosity relation : brighter - slower
 color-luminosity relation : brighter-bluer

- → ~16% dispersion on L_{peak}
- \rightarrow 8% precision on distance D_L

- thermonuclear explosion of a white dwarf : bright events (~10¹¹ L_☉)
 rare (<1 / galaxy / century)
 identified by their spectra
 show little (40%) B-band peak luminosity L_{peak} dispersion
- they are standard candles

 light curve shape-luminosity relation : brighter - slower
 color-luminosity relation : brighter-bluer

- → ~16% dispersion on L_{peak}
- → 8% precision on distance D_L

supernovae la modelisation : e.g. Kasen, 2009

- carbon-oxygen white dwarf in binary systems accreting mass from companion star
- multi-dimensional modelling of the explosion physics and radiative transfer

reproduces global light-curve & spectra behavior, brighter-slower & brighter-bluer relations

... but not precise enough to avoid resorting to empirical modeling for peak luminosity, stretch and color measurement

An empirical approach :

- comparing fluxes at different redshifts
- standardisation and distance estimator

comparing fluxes at different redshift

$$D_L = \left(\frac{L}{4\pi F}\right)^{1/2} = \frac{cz}{H_0} f_D(z;\Omega_m,\Omega_{DE},w)$$

 F_B is the restframe B band flux (m_B magnitude) measured at \neq redshifts

- \rightarrow in \neq obs. frame filters
- → flux inter-calibration of passbands

Calibration is crucial : dominant systematics in survey

to get m_B at peak, stretch & color :

- → empirical spectro-photometric modeling $\phi(\lambda, t)$ to interpolate between photometric measurements
- → trained on a set of nearby & distant SNe

standardisation & distance estimator

- z & m_B , *stretch*, *color* measured on each SN
- M_B , α , β fitted on Hubble diagram $\mu(z)$ along with cosmology
- α : brighter-slower relation
- β : brighter-bluer relation -- no assumption whether intrinsic or due to extinction by dust

recent Hubble diagram : cosmological constraints Suzuki *et al.*, 2012 Union 2 compilation : SNe from various teams, Calàn-Tololo, SDSS, HZTeam, Essence, and the Supernova Cosmology Project, the Supernova Legacy Survey

Mon parcours :

Mon parcours :

Now and since 1999 : Maître de Conférence at Univ. Pierre et Marie Curie, in the Laboratoire de Physique Nucléaire et des Hautes Energies Cosmology Group

The Supernova Cosmology Project

search & observing runs for SNe Ia at intermediate redshifts (redshift desert) at the Isaac Newton Group telescopes

 since 2003 : The Supernova Legacy Survey measuring w with distant SNe Ia up to z ~ 1. at the Canada-France-Hawaii telescope

• SNLS supernovae photometry (developped in the frame of Nicolas Fourmanoit's PhD)

• **SNLS galaxies** : constructing a 3-D catalog for : gravitationnal lensing, SN environment impact on cosmology

Measuring w at precision better than 0.1 systematics control is fundamental to the design of SNLS

Deep CFHT Legacy Survey : 4 square degrees 40 nights /year during 5 years (end : 08/2009)

- detection & follow-up with 1 instrument :
 3.6-m telescope @ Hawaii (Mauna Kea, 4200m),
 Megacam (CEA/IRFU), 36 CCDs, 3.4 10⁸ pixels, 1 sq. degree
- \rightarrow calibration at < 1%
- \rightarrow deep survey (Malmquist bias)
- spectroscopic follow-up : ~ 450 SNe Ia (SNLS5)
 10-m class telescopes @ Hawaii, Chile
- 4 filters griz : \rightarrow m_B at \neq z, B-V or U-B *colors* for all SNe
- *rolling search* : repeated observations of 4 fields detection & follow-up at the same time
 - \rightarrow well sampled & well measured lightcurve : m_B , *stretch & color*
- → deep SN-free images : photometric study of SNe host galaxies

Filters

Rolling Search Mode

SNLS-3 extended Hubble Diagram

123 nearby (z ~ 0.05)& 93 SDSS-II(z~ 0.1-0.4)& 242 SNLS(z ~ 0.2-1.)& 14 HST(z ~ 0.7-1.4)SNe la

SNLS-3 + flat universe (SN only): statistical uncertainties

Conley et al., 2011

<u>SNLS-3 + flat universe (SN only):</u> Taking thoroughly acount of **systematic** uncertainties

SNLS-3 + flat universe+ other probes : BAO + WMAP7

Sullivan et al., 2011

29

Main contributions in the Supernova Legacy Survey :

• the photometry of SNL5 supernovae (developped in the frame of Nicolas Fourmanoit PhD)

 SNLS galaxies : SNLS SNe gravitational magnification (Taia Kronborg PhD, supervisor: J. Guy) host galaxies & SN as a distance indicator : a 3rd relation

06D2ex 06D2b 05D1hn 04D3b/ 06D3m 06D1ab 05D2ah 04D1do 04D4Ht 04D2bt 06D3m 06D3bb 05D3mq 05D1y 05D3mj 05D1y 05D3mj 05D1y 05D3mj 05D1y 05D1y 05D3mj 05D1y 05D1y 05D1j 05D1j 05D1j 05D1j 05D2ja 06D1n 06D2mj 06D1n 05D1ja 05D1ja 06D1ja 05D1ja 05D1ja 06D1ja 05D1ja 05D1ja 06D1ja 06D2ja 06D1ja 06D2ja 06D1ja 06D2ja 06D1ja 06D2ja 06D2								
04D4ht 04D2bt 06D3cn 06D1du 06D3bb 05D3mq 06D1ly 06D3bb 06D3gn 04D3ez 06D3fb 06D3dt 03D3bb 05D1by 05D2ga 06D1h 06D3gn 04D3ez 06D3fb 06D3dt 03D3bb 05D1by 05D2ga 06D1h 05D1ej 05D2ab 06D1hj 03D1b 04D3kz 06D1hj 06D2ga 06D1hj 06D2ga 05D1ej 05D2ab 06D1hj 03D1b 04D3kz 05D3hj 06D1hj 06D2ga 06D1hj 06D2ga 05D1ej 05D2ab 06D1hj 03D1b 04D3kz 05D3hj 06D1hj 06D2ga 05D1bj 04D2ac 06D1hj 05D2mj 03D3bj 06D3dj 04D3kz 05D2ajj	06D2ez	06D2fb	05D1hn	04D3bf	05D3ne	06D1ab	05D2ah	04D1dc
04Dhtit 04D2bt 06D3en 06D1du 06D3bb 05D3mq 05D1iy 05Dihy 03D3bh 06D3gn 04D3ez 06D3pi 06D3pi 06D3bi 05D1by 05D2ja 06D1in 06D3gn 04Daez 06D1hj 06D3pi 06D3pi 06D1in 05D2ja 06D1in 06D3gn 04Daez 06D1hj 06D3pi 06D1hj 05D3hq 06D1hj 05D2ja 06D1hj 05D2ja 06D1hj 05D2ja 06D1hj 06D2ja 06D1hj 06D2ja 06D1hj 05D2ja 06D1hj 06D2ja <				-				
06D3gn 04D3ez 06D3fp 06D3dt 03D3ba 05D1by 05D2ja 06D1in 06D3gn 04D3ez 06D3hp 06D3ft 03D3ba 05D1by 06D2ja 06D1in 06D3gn 05D2ab 06D1hj 03D1fc 04D3kr 05D3hq 06D1hi 06D2hi 03D1bp 05D2ab 06D1hj 03D1fc 04D3kr 05D3hq 06D1hi 06D2hi 03D1bp 04D2ac 06D1hi 05D2mp 03D3bi 06D3di 04D3fc 05D2ei	04D4ht	04D2bt	06D3cn	06D1du	03D3bb	05D3mq	05D1ly	03D3bh
06D3gn 04D3ez 06D3fp 06D3dt 03D3ba 05D1by 05D2ja 06D1ln 05D1ej 05D2ab 06D1hj 03D1fc 04D3kr 05D3hq 06D1hj 06D2dt 05D1ej 05D2ab 06D1hj 03D1fc 04D3kr 05D3hq 06D1hj 06D2dt 03D1bp 04D2ac 06D1td 05D2mp 03D3bi 06D3di 04D3fk 05D2el	•					20		
05D1ej 05D2ab 06D1hj 03D1fc 04D3kr 05D3hq 06D1hj 06D2H 03D1bp 04D2ac 03D1fd 05D2mp 03D3bj 06D3di 04D3kr 05D2ej	06D3gn	04D3ez	06D3fp	06D3dt	03D3ba	05D1by	05D2ja	06D1In
03D1bp 04D2ac 06D1fd 05D2mp 03D3bi 06D3di 04D3fk 05D2ei 04D1bd 03D3bi 06D3di 04D3fk 05D2ei 05D2ei 05D2ei	05D1ej	05D2ab	06D1hj	03D1fc	04D3kr	05D3hq	06D1hf	06D2H
04D1bd 03D8ev 05D4bm 05D4tf 05D4tf 05D4tf 05D2dw 05D3ct	03D1bp	04D2ac	USD 11d	05D2mp	03D3Ы	06D3dl	04D3fk	05D2el
	04D1b4	03D9by	05D4bm	03D1d	05D4#	03D ter	05D2the	05D3ct

(1) SNe gravitational magnification:

- \rightarrow inhomogeneities along the SNe line of sight :
 - SNe light magnification : $F(lensed) = \mu \times F(true)$

Holz & Linder 2005

- increase dispersion of Hubble Diagram (e.g. Frieman1996, Holz & Linder 2005 ...)
- taken into account in SNLS3 cosmology fit statistical error matrix : $\sigma_{\text{lensing}} \approx 0.055 \times z$

(1) SNe gravitational lensing :

- → magnification of distant SNe la : probe of foreground galaxies dark matter halo
- detection method : Gunnarson2006, Jonsson2006

Hubble residual: $r = \mu_L(SN) - \mu_L(z; cosmologie)$, $\mu_L(SN)$ estimated with SN mags.

(2) Does the cosmology measurement depends on the SN environment ?

 \rightarrow SN stretch : segregation according host galaxy caracteristics

SN stretch is on average smaller (SN fainter) in :

elliptical / passive (sSFR) / red / massive (stellar mass) / evolved (mean stellar age) / more metallic galaxies

Filipenko1989, Hamuy1996,2000, Gallagher2005,2008 etc. Sullivan2006 : SNLS SNe

→ SN color : no clear dependance Hicken2009, Smith2011, Sullivan2010, Galbany2012

Gallagher et al. 2008

(2) Does the cosmology measurement depends on the SN environment ?

→ SNe Ia rate : dependance on galaxy specific Star Formation Rate

explosion rate = SN/yr/M $_{\odot}$ in active galaxies (sSFR) ~ 10 × passive galaxies (Manucci2005, Sullivan2006)

demographic shift : SN % in star-forming host galaxies (\Rightarrow greater stretch, brighter) increases with redshift z

- → Fully corrected by the brighter-slower relation ? demographic shift : potential bias (z) in Hubble diagram
- \rightarrow Does M_B, $\alpha,\beta\,$ depends on the environment ?

Photometric catalog construction : Hardin *et al.*, in prep. positions, size, magnitudes in ugriz filters, ...

- → measuring ugriz galaxies magnitudes on deep stacked images excluding images when SN is on
- → limiting mag at S/N=5: i(Vega) ~ 25.3, ~200 000 galaxies/field bias less than ~ 2%

Galaxy Photometric Modeling : Kronborg et al., 2010

→ photometric redshift technique (Baum1957) :

• spectral template library : $S(\lambda, M)$ for galaxy model M. M discrete or continuous vary the model normalisation \mathcal{A} and the redshift z

• ugriz mags fit with spectral template library :

photometric redshift z & absolute magnitude, intrinsic colors

• error propagation from obs. mags to computed caracteristics

• SED S(λ , M) optimized using galaxies with spectro. redshifts :

so that $\langle z \rangle$ spectro - z photometric $\rangle = 0$: un-bias photo-z's

Galaxy Photometric Modeling : Kronborg et al., 2010

→ which photo-z' s ?

• published photo-z's : Ilbert2006, Coupon2009 on Deep (SNLS) fields

Ilbert2009 COSMOS 30-bands data (overlap SNLS field D2)

empirical template library « optimized » error propagation from obs. mags. to absolute mags, colors and photo-z ?

- stellar population synthesis code : PEGASE.2 Fioc1999 ; ZPEG, LeBorgne2002.
 --> star formation history, recent star formation, stellar mass
 but not optimized
- optimized own template library (Expo) : <10 simple (PEGASE.2) templates trained on data : D3 field for ~ 6300 galaxies (0.1<z<1.5) from DEEP-2 survey (Davis2003,2007).

\rightarrow performance :

- estimated on ~3600 galaxies with spectro. redshifts on D1 field from VVDS Deep Survey (LeFevre2004).
- catastrophic errors i.e. $|\Delta z|/(1+z) > 0.15$: 6.6%
- precision i.e. $\sigma_z = \sigma(\Delta z / (1+z))$: $\sigma_z = 0.038$
- published photo-z on Deep fields (Ilbert2006, Coupon2009) : $\sigma_z = 0.03$, cat. error : 3.6%
- used for photometric-z, absolute magnitudes and rest-frame colors estimation error propagation with Monte-Carlo
- but optimization correction :

original PEGASE.2 templates used when the redshift is fixed : recent SFR rate, stellar mass etc.

Host galaxies identification:

→distance criteria & identification of problematic situations :
 ~85% of SNe with well identified host
 → SNe stretch vs host caracteristics :

stretch segregation according to host caracteristics

06D2ex 06D2b 05D1hn 04D3b/ 06D3m 06D1ab 05D2ah 04D1do 04D4Ht 04D2bt 06D3m 06D3bb 05D3mq 05D1y 05D3mj 05D1y 05D3mj 05D1y 05D3mj 05D1y 05D1y 05D3mj 05D1y 05D1y 05D1j 05D1j 05D1j 05D1j 05D2ja 06D1n 06D2mj 06D1n 05D1ja 05D1ja 06D1ja 05D1ja 05D1ja 06D1ja 05D1ja 05D1ja 06D1ja 06D2ja 06D1ja 06D2ja 06D1ja 06D2ja 06D1ja 06D2ja 06D2								
04D4ht 04D2bt 06D3cn 06D1du 06D3bb 05D3mq 06D1ly 06D3bb 06D3gn 04D3ez 06D3fb 06D3dt 03D3bb 05D1by 05D2ga 06D1h 06D3gn 04D3ez 06D3fb 06D3dt 03D3bb 05D1by 05D2ga 06D1h 05D1ej 05D2ab 06D1hj 03D1b 04D3kz 06D1hj 06D2ga 06D1hj 06D2ga 05D1ej 05D2ab 06D1hj 03D1b 04D3kz 05D3hj 06D1hj 06D2ga 06D1hj 06D2ga 05D1ej 05D2ab 06D1hj 03D1b 04D3kz 05D3hj 06D1hj 06D2ga 05D1bj 04D2ac 06D1hj 05D2mj 03D3bj 06D3dj 04D3kz 05D2ajj	06D2ez	06D2fb	05D1hn	04D3bf	05D3ne	06D1ab	05D2ah	04D1dc
04Dhtit 04D2bt 06D3en 06D1du 06D3bb 05D3mq 05D1iy 05Dihy 03D3bh 06D3gn 04D3ez 06D3pi 06D3pi 06D3bi 05D1by 05D2ja 06D1in 06D3gn 04Daez 06D1hj 06D3pi 06D3pi 06D1in 05D2ja 06D1in 06D3gn 04Daez 06D1hj 06D3pi 06D1hj 05D3hq 06D1hj 05D2ja 06D1hj 05D2ja 06D1hj 05D2ja 06D1hj 06D2ja 06D1hj 06D2ja 06D1hj 05D2ja 06D1hj 06D2ja <				-				
06D3gn 04D3ez 06D3fp 06D3dt 03D3ba 05D1by 05D2ja 06D1in 06D3gn 04D3ez 06D3hp 06D3ft 03D3ba 05D1by 06D2ja 06D1in 06D3gn 05D2ab 06D1hj 03D1fc 04D3kr 05D3hq 06D1hi 06D2hi 03D1bp 05D2ab 06D1hj 03D1fc 04D3kr 05D3hq 06D1hi 06D2hi 03D1bp 04D2ac 06D1hi 05D2mp 03D3bi 06D3di 04D3fc 05D2ei	04D4ht	04D2bt	06D3cn	06D1du	03D3bb	05D3mq	05D1ly	03D3bh
06D3gn 04D3ez 06D3fp 06D3dt 03D3ba 05D1by 05D2ja 06D1ln 05D1ej 05D2ab 06D1hj 03D1fc 04D3kr 05D3hq 06D1hj 06D2dt 05D1ej 05D2ab 06D1hj 03D1fc 04D3kr 05D3hq 06D1hj 06D2dt 03D1bp 04D2ac 06D1td 05D2mp 03D3bi 06D3di 04D3fk 05D2el	•					20		
05D1ej 05D2ab 06D1hj 03D1fc 04D3kr 05D3hq 06D1hj 06D2H 03D1bp 04D2ac 03D1fd 05D2mp 03D3bj 06D3di 04D3kr 05D2ej	06D3gn	04D3ez	06D3fp	06D3dt	03D3ba	05D1by	05D2ja	06D1In
03D1bp 04D2ac 06D1fd 05D2mp 03D3bi 06D3di 04D3fk 05D2ei 04D1bd 03D3bi 06D3di 04D3fk 05D2ei 05D2ei 05D2ei	05D1ej	05D2ab	06D1hj	03D1fc	04D3kr	05D3hq	06D1hf	06D2H
04D1bd 03D8ev 05D4bm 05D4tf 05D4tf 05D4tf 05D2dw 05D3ct	03D1bp	04D2ac	USD 11d	05D2mp	03D3Ы	06D3dl	04D3fk	05D2el
	04D1b4	03D9by	05D4bm	03D1d	05D4#	03D ter	05D2the	05D3ct

04D4gg	05D2c	04D1rh	06D3df	03D3aw	04D2gb	04D3gt	05D3lc
					- Auto-		
	1.				1. A. A.	1	
03D3cc	03D4au	04D3df	04D4ju	05D2bv	05D1lx	03D1ax	03D1fb
		2 (A. C.)		•	#		
		1.200		1 A.	-		1
						• · · · ·	
05D4af	05D4av	05D2dy	04D2mj	04D1pg	04D4In	06D3el	04D2gc
							•
06D2ca	03D3af	05D4ek	05D4be	04D4bq	04D3hn	03D1gt	05D1cc
			·				
							1. 1. 1. 2
05D1dn	04D2cw	03D4gl	05D2dt	03D1bm	06D3et	05D3jq	05D1dx
							1
03D1aw	04D1jg	04D1kj	05D4bf	04D1oh	03D400	05D3lr	05D4ef

						A 10.0	
06D1bo	03D4dy	03D1dt	04D4an	05D1ck	04D3co	06D1cm	03D4dh
	1						
				3 A			
04D4fx	05D1cb	05D4ag	05D3ax	05D3lb	04D1sk	05D3hs	05D3mh
		8 ⁴⁹	1. 1.				
			1 A A				
000100	OFDOL	000000	02018	00000	04D4lb	AEDOIA	0ED (H
030100	050201	06D366	03011	UBUSER	U4D4ID	050218	05040j
		1					
04D1si	03D1bf	05D1ju	05D3gv	06D3do	06D3bz	04D2gp	05D2fq
		1. A.					
05D2ct	04D1pp	05D3jk	05D1eo	04D2ja	04D3fq	04D2kr	05D3jb
NY A IN				-			. •.
1 8				· · · · · · · · · · · · · · · · · · ·			
04D3ks	04D4lm	04D3oe	05D2nt	05D3mn	05D1lf	05D3hh	04D1qd

3. Supernova Legacy Survey Galaxies : *SNLS3 SNe gravitational magnification*

Kronborg *et al.*, 2010

→ correlation between expected magnification μ_m = -2.5 log₁₀(μ) & Hubble residual r for SNLS3 SNe Ia sample (171 SNe Ia)

- correlation coefficient : 0.18
- significance estimated shuffling data : detection at 2.3-σ level
- \bullet galaxy classification elliptical/spiral with restframe U-V if random, the detection drops to 1.4- σ

→ differing M_B values according to host stellar mass : Sullivan *et al.*, 2010

- the **average** SNe Ia is fainter in massive galaxies : taken into account by the brighter-slower relation
- the "standard"(*) SNe Ia is brighter (~ 4- σ) in massive galaxies
- (*i.e. *stretch*=1 *color*=0)
- subtle effect 0.08mag : smaller than stretch and color corrections

 $\mu_{\rm B} = m_B - M_B^{-1} + \alpha \text{ (stretch-1)} - \beta \text{ color} \quad \text{when } M_{\rm host} < M_{\rm split}$ $\mu_{\rm B} = m_B - M_B^{-2} + \alpha \text{ (stretch-1)} - \beta \text{ color} \quad \text{when } M_{\rm host} > M_{\rm split}$

• Hubble diagram fit with 2 different $\,M_B{}'\,s$ value, one for the low and one for the high mass pop. + a common cosmology Ω_Λ

SN population split with a varying threshold in host stellar mass for this study : SNLS SNe at z<0.85

Statistical significancethreshold : stellar mass = $10^{10.5} M\odot$, $\Delta M_B \neq 0$ at 3.7- σ 46

- also at a lesser significance with : sSFR, U-V color, abs. R Mag
- also detected in nearby and intermediate-z samples :
- e.g. SDSS Lampeitl2010, Kelly2010, Gupta2011 (206 SNe, 3-σ)
- no significative difference in α , significative difference in β depending on sample
- \rightarrow besides SN stretch & color, host stellar mass as a 3rd parameter ?

→ besides SN stretch & color, host stellar mass as a 3rd parameter ? Sullivan et al., 2011

use two $M_B^{}-$ one for high-mass galaxies and one for low-mass host galaxies $M_{split}^{}=10^{10}~M_{\odot}^{}$

$$\mu_{\rm B} = m_B - M_B^{-1} + \alpha \text{ (stretch-1)} - \beta \text{ color} \quad \text{when } M_{\rm host} < M_{\rm split}$$

$$\mu_{\rm B} = m_B - M_B^{-2} + \alpha \text{ (stretch-1)} - \beta \text{ color} \quad \text{when } M_{\rm host} > M_{\rm split}$$

→ besides SN stretch & color, host stellar mass as a 3rd parameter ? Sullivan et al., 2011

use two $M_{\rm B}$ – one for high-mass galaxies and one for low-mass host galaxies M_{split} = $10^{10}~M_{\odot}$

$$\mu_{\rm B} = m_B - M_{\rm B}^{-1} + \alpha \text{ (stretch-1)} - \beta \text{ color} \quad \text{when } M_{\rm host} < M_{\rm split}$$
$$\mu_{\rm B} = m_B - M_{\rm B}^{-2} + \alpha \text{ (stretch-1)} - \beta \text{ color} \quad \text{when } M_{\rm host} > M_{\rm split}$$

→ besides SN stretch & color, host stellar mass as a 3rd parameter ? Sullivan et al., 2011

use two $M_B^{}-$ one for high-mass galaxies and one for low-mass host galaxies $M_{split}^{}=10^{10}~M_{\odot}^{}$

$$\mu_{\rm B} = m_B - M_{\rm B}^{-1} + \alpha \text{ (stretch-1)} - \beta \text{ color} \quad \text{when } M_{\rm host} < M_{\rm split}$$
$$\mu_{\rm B} = m_B - M_{\rm B}^{-2} + \alpha \text{ (stretch-1)} - \beta \text{ color} \quad \text{when } M_{\rm host} > M_{\rm split}$$

And two β 's ? χ^2 reduced, but $\delta w \sim 0$ and $\delta \Omega \sim 0$ \rightarrow only 1 β , but δw taken into account in systematics

interpretation as metallicity ?

→ Tremonti et al. 2004 : stellar mass - metallicity relation
+ Gallagher et al., 2008 ; Konishi et al. 2011, D' Andrea et al. 2011 (SDSS) : standard SN brighter in (spectroscopic) high-metallicity hosts

 \rightarrow Timmes et al. 2003 : higher metallicity white dwarf \rightarrow neutron-rich SN Ia

 \rightarrow explosion produces more stable ⁵⁸Ni and less ⁵⁶Ni

→ fainter SN

→ Kasen et al. 2009 : ⁵⁶Ni mass and metal abundances as an input of radiative transfer code

→ for higher metallicity ie higher ⁵⁶Ni mass, SN is fainter

but also faster (brighter-slower relation)

 \rightarrow but slope & normalisation differ :

higher metallicity standard SN is brighter !

→host stellar mass as a 3rd parameter

→host galaxies studies mandatory for SNe la surveys

4. Perspectives

SNLS galaxies catalog :

- publication of photometry in preparation
- better modelisation: including dust (improve galaxy classifcation), JHK photometry from WIRcam Deep Survey

SNLS SNe la magnification : PhD thesis starting this winter

- expected detection level with SNLS-5 yrs : 400 SNe la
- + 200 photometric SNe Ia : detection at a 3- σ level at 80%
- constraints on σ_v (halo) ?

comparaison with galaxy-galaxy lensing measurements from CFHTLens : M₂₀₀ measurement for blue and red galaxies on Wide fields M. Velander in prep.

4. Perspectives

Photometric SNLS SNe la Hubble diagram :

- photometric SNe Ia SNLS-3 yrs : Bazin2011, SNLS-5 yrs underway
- spectroscopic redshift program with AAOmega at the 4-m Anglo-Australian-Telescope : Lidman2012 already 80 SNe Ia redshifts
- host masses: Hardin et al. in prep

prefigures future SN surveys such as Dark Energy Survey (2012), Large Synoptic Survey Telescope (2020)

4. Perspectives

SNLS+WMAP7+BAO/DR7+H₀

Flat w = -1.061 \pm 0.069 Ω m = 0.269 \pm 0.015

non Flat **w** = -1.069 \pm 0.091 Ω m = 0.271 \pm 0.015 Ω k = -0.002 \pm 0.006

minus SNe w = -1.412 \pm 0.333 Ω m = 0.259 \pm 0.030 Ω k = -0.009 \pm 0.008

minus BAO $w = -1.018 \pm 0.111$ $Ωm = 0.259 \pm 0.049$ $Ωk = 0.001 \pm 0.015$

4. perspectives

DES: Dark Energy Survey

complementarity of SNe Ia as a probe for DE with lensing:

15 sq. deg. ~ 4000 SNe Ia z~ 0.05 to z~1.2 20% spectroscopic id. photometric Ia + host spectro Bernstein *et al.* 2012

Instrument :

- Bianco 4-m @ Chile
- camera 5.2 10⁸ pixels (62 CCDs)

• 2.2 deg²

<u>Survey:</u>

- 5 years
- 5 000 deg², 8 bands survey grizY + JHK from VHS
- > 10^8 galaxies with photo-z

Schedule: now !

4. perspectives

LSST : Large Synoptic Survey Telescope

a wide and deep field survey

nature of dark energyfalsifiate w=-1 ?

• a time variating w ? $w(a) = w_0 + w_a (1-a/a_0)$ Figure of Merit : [Det Cov(w_0, w_a)]^{-1/2}

complementarity of SNe Ia probe for DE with lensing/BAO:

e.g. : 2 complementary programs at $z \sim 0.2$ and z < 1 O(10 000) SNe Ia, photometry only

joint survey with **Euclid spatial** mission ?

Instrument :

- primary mirror 8.4-m @ Chile
- camera 3.2 10⁹ pixels (189 CCDs)

• 9.6 deg²

<u>Survey:</u>

- 10 years, 5 10⁶ images
- 20 000 deg², 6 filters UV NIR
- $\cdot > 3 \ 10^9$ galaxies with photo-z

<u>Schedule:</u> first priority by NAS in 2010, funding NSF/DOE in 2014, first light 2020

4. perspectives

Euclid : Spatial Mission

SNe Ia as complementary probe for DE with lensing/BAO

joint program with LSST SNe Ia at $z \sim 0.75$ to $z \sim 1.5$?

Instrument :

- 1.2-m
- 0.5 deg²
- dichroic visble/NIR YJH
- slitless spectrograph
- 6 years

Schedule:

ESA Cosmic Vision 2020-2025, launched in 2020

- SNe Ia efficient probe for w measurement : key for future Dark Energy Programs
- SNLS SNe Ia distance estimator improved and systematics thorougly studied
- SNLS indeed a Legacy Survey